JVI Accepted Manuscript Posted Online 29 January 2020 J. Virol. doi:10.1128/JVI.00127-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

1	
2	Receptor recognition by novel coronavirus from Wuhan:
3	An analysis based on decade-long structural studies of SARS
4	
5	Yushun Wan ^{1,*} , Jian Shang ^{1,*} , Rachel Graham ² , Ralph S. Baric ² , Fang Li ^{1,#}
6	
7	¹ Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine,
8	University of Minnesota, Saint Paul, MN, USA
9 10	² Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
11 12 13	* These authors contributed equally to this work.
14 15 16	# Correspondence:
10 17 18	Fang Li (<u>lifang@umn.edu</u>)
19 20	Keywords: Wuhan coronavirus, SARS coronavirus, angiotensin-converting enzyme 2,
21	animal reservoir, cross-species transmission, human-to-human transmission
22	
23	Running title: Analyzing receptor usage by Wuhan coronavirus
24	

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

26	Recently a novel coronavirus (2019-nCoV) has emerged from Wuhan, China,
27	causing symptoms in humans similar to those caused by SARS coronavirus (SARS-
28	CoV). Since SARS-CoV outbreak in 2002, extensive structural analyses have revealed
29	key atomic-level interactions between SARS-CoV spike protein receptor-binding domain
30	(RBD) and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate
31	both the cross-species and human-to-human transmissions of SARS-CoV. Here we
32	analyzed the potential receptor usage by 2019-nCoV, based on the rich knowledge about
33	SARS-CoV and the newly released sequence of 2019-nCoV. First, the sequence of 2019-
34	nCoV RBD, including its receptor-binding motif (RBM) that directly contacts ACE2, is
35	similar to that of SARS-CoV, strongly suggesting that 2019-nCoV uses ACE2 as its
36	receptor. Second, several critical residues in 2019-nCoV RBM (particularly Gln493)
37	provide favorable interactions with human ACE2, consistent with 2019-nCoV's capacity
38	for human cell infection. Third, several other critical residues in 2019-nCoV RBM
39	(particularly Asn501) are compatible with, but not ideal for, binding human ACE2,
40	suggesting that 2019-nCoV has acquired some capacity for human-to-human
41	transmission. Last, while phylogenetic analysis indicates a bat origin of 2019-nCoV,
42	2019-nCoV also potentially recognizes ACE2 from a diversity of animal species (except
43	mice and rats), implicating these animal species as possible intermediate hosts or animal
44	models for 2019-nCoV infections. These analyses provide insights into the receptor
45	usage, cell entry, host cell infectivity and animal origin of 2019-nCoV, and may help
46	epidemic surveillance and preventive measures against 2019-nCoV.

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

48 Significance

49	The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on
50	alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002-2003. Our decade-
51	long structural studies on the receptor recognition by SARS-CoV have identified key
52	interactions between SARS-CoV spike protein and its host receptor angiotensin-
53	converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-
54	human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to
55	build an atomic-level iterative framework of virus-receptor interactions to facilitate
56	epidemic surveillance, predict species-specific receptor usage, and identify potential
57	animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike
58	protein, we apply this predictive framework to provide novel insights into the receptor
59	usage and likely host range of 2019-nCoV. This study provides a robust test of this
60	reiterative framework, providing the basic, translational and public health research
61	communities with predictive insights that may help study and battle this novel 2019-
62	nCoV.

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

64 Introduction

65	A novel coronavirus (2019-nCoV) from Wuhan, China has recently caused over
66	500 confirmed cases of human infections and at least 17 deaths in China
67	(https://www.cdc.gov/coronavirus/novel-coronavirus-2019.html). There are also
68	numerous confirmed cases of 2019-nCoV infections in other countries including USA.
69	Many of the symptoms caused by 2019-nCoV, such as acute respiratory syndrome, are
70	similar to those caused by SARS coronavirus (SARS-CoV). SARS-CoV emerged in
71	2002-2003 and transmitted among humans, causing over 8000 confirmed cases of human
72	infections and about 800 deaths (1-4). It briefly re-emerged in 2003-2004, with 4
73	confirmed cases of mild human infections and no human-to-human transmission (5-7).
74	SARS-CoV has also been isolated from animals and been adapted to lab cell culture (5,
75	8-11). It is believed that bats and palm civets were the natural and intermediate reservoirs
76	for SARS-CoV, respectively, and that SARS-CV transmitted from palm civets to humans
77	in an animal market in Southern China (12-14). It has been reported that 2019-nCoV also
78	infected humans in an animal market in Wuhan, although the animal source of the
79	outbreak is currently unknown. Moreover, it has been confirmed that 2019-nCoV has the
80	capacity to transmit from human to human.
81	Coronaviruses are a large family of single-stranded enveloped RNA viruses and
82	can be divided into four major genera (15). Both SARS-CoV and 2019-nCoV belong to
83	the β -genus. An envelope-anchored spike protein mediates coronavirus entry into host
84	cells by first binding to a host receptor and then fusing viral and host membranes (16). A
85	defined receptor-binding domain (RBD) of SARS-CoV spike specifically recognizes its

 $\overline{\leq}$

Σ

86	host receptor angiotensin-converting enzyme 2 (ACE2) (17, 18). Different lines of
87	research have shown that which host is susceptible to SARS-CoV infection is primarily
88	determined by the affinity between the viral RBD and host ACE2 in the initial viral
89	attachment step (19-23). In a span of about 10 years, we determined a series of crystal
90	structures of SARS-CoV RBD complexed with ACE2; the RBDs were from SARS-CoV
91	strains isolated from different hosts species in different years and the ACE2 receptor
92	orthologues were derived from different animal species (18, 24-26). These structures
93	showed that SARS-CoV RBD contains a core structure and a receptor-binding motif
94	(RBM), and that the RBM binds to the outer surface of the claw-like structure of ACE2
95	(Fig. 1A) (25). Importantly, we identified two virus-binding hotspots on human ACE2
96	(24, 26). A number of naturally selected RBM mutations occurred near these two virus-
97	binding hotspot and these residues largely determined the host range of SARS-CoV (Fig.
98	1B, 1C). Furthermore, we discovered specific amino acids at 442, 472, 479, 480 and 487
99	positions that enhance viral binding to human ACE2, and some other amino acids at these
100	same positions that enhance viral binding to civet ACE2 (Fig. 1C). Importantly, when all
101	human-ACE2-favoring residues were combined into one RBD, this RBD binds to human
102	ACE2 with super affinity and the corresponding spike protein mediates viral entry into
103	human cells with super efficiency (Fig. 1C) (26). An RBD with super affinity for civet
104	ACE2 was also designed and empirically confirmed (Fig. 1C) (26). These gain-of-
105	function data provided strong supporting evidence for the accuracy of our structural
106	predictions. A long-term goal of these earlier studies is to establish a structure-function
107	predictive framework for improved epidemic surveillance. More specifically, we aim to
108	predict the receptor usage and host cell infectivity of future SARS-CoV or SARS-like

viral strains and identify their possible animal origins and animal models, based on the
sequences of their spike proteins and the known atomic structures of original SARS-CoV
RBD/ACE2 complex. Here, based on the newly released sequence of 2019-nCoV RBD,
we reiteratively apply this predictive framework to provide novel insights into the
receptor usage and likely host range of 2019-nCoV.

114

115 Results

116	The 2019-nCoV spike phylogeny is firmly rooted among other β -genus lineage b
117	bat SARS-like coronaviruses (Fig. 2), but is ancestral to both human SARS-CoV
118	(epidemic strain isolated in year 2002) and bat SARS-CoV strains that use ACE2
119	receptor to enter and infect primary host lung cells (11, 17). The overall sequence
120	similarities between 2019-nCoV spike and SARS-CoV spike (isolated from human, civet
121	or bat) are around 76%-78% for the whole protein, around 73%-76% for the RBD, and
122	50%-53% for the RBM (Fig. 3A, 3B). In comparison, human coronavirus MERS
123	coronavirus (MERS-CoV) and bat MERS-like coronavirus HKU4 share lower sequence
124	similarities in their spikes, RBDs or RBM (Fig. 3C), and yet they recognize the same
125	receptor dipeptidyl peptidase 4 (DPP4) (27, 28). Thus, sequence similarities between
126	2019-nCoV and SARS-CoV spikes suggest the possibility for them to share the same
127	receptor ACE2. Importantly, compared to SARS-CoV RBM, 2019-nCoV RBM does not
128	contain any deletion or insertion (except for a one-residue insertion on a loop away from
129	the ACE2-binding region) (Fig. 3A), providing additional evidence that 2019-nCoV uses
130	ACE2 as its receptor. Furthermore, among the 14 ACE2-contacting residues in the RBD,
131	9 are fully conserved and 4 are partially conserved among 2019-nCoV and SARS-CoV

 \leq

132	from human, civet and bat (Fig. 3A). A final piece of strong evidence supporting ACE2
133	as the receptor for 2019-nCoV surrounds the five residues in 2019-nCoV RBM that
134	underwent natural selections in SARS-CoV and played critical roles in the cross-species
135	transmission of SARS-CoV (i.e., residue 442, 472, 479, 480, 487 in SARS-CoV RBD)
136	(Fig. 1B). We discuss these residues in more details below.
137	First, residue 493 in 2019-nCoV RBD (corresponding to residue 479 in SARS-
138	CoV) is a glutamine (Fig. 1B, 1D). A previously designed SARS-CoV RBD is optimal
139	for binding to human ACE2 (Fig. 1B, 1C) (26). Residue 479 in SARS-CoV RBD is
140	located near virus-binding hotspot Lys31 (i.e., hotspot-31) on human ACE2 (Fig. 1C).
141	Hotspot-31 consists of a salt bridge between Lys31 and Glu35 buried in a hydrophobic
142	environment. In civet SARS-CoV RBD (year 2002), residue 479 is a lysine, which
143	imposes steric and electrostatic interference with hotspot-31. In human SARS-CoV RBD
144	(year 2002), residue 479 becomes an asparagine. The K479N mutation removes the
145	unfavorable interaction at the RBD/human ACE2 interface, enhances viral binding to
146	human ACE2, and played a critical role in the civet-to-human transmission of SARS-
147	CoV (Fig. 1C) (24-26). Importantly, Gln493 in 2019-nCoV RBD is compatible with
148	hotspot-31, suggesting that 2019-nCoV is capable of recognizing human ACE2 and
149	infecting human cells.
150	Second, residue 501 in 2019-nCoV RBD (corresponding to residue 487 in SARS-
151	CoV) is an asparagine (Fig. 1B, 1D). Based on our previous structural analysis, residue
152	487 in SARS-CoV is located near virus-binding hotspot Lys353 (i.e., hotspot-353) on
153	human ACE2 (Fig. 1C) (26). Hotspot-353 consists of a salt bridge between Lys353 and
154	Asp38 also buried in a hydrophobic environment. In civet SARS-CoV RBD (year 2002),

155	residue 487 is a serine, which cannot provide favorable support for hotspot-353. In
156	human SARS-CoV isolated in year 2002, residue 487 is a threonine, which strengthens
157	the structural stability of hotspot-353. The S487T mutation adds the favorable interaction
158	at the RBD/human ACE2 interface, enhances viral binding to human ACE2, and played a
159	critical role in the human-to-human transmission of SARS-CoV (24-26). In human
160	SARS-CoV isolated in year 2003, residue 487 is a serine and there was no human-to-
161	human transmission for this SARS-CoV strain. Asn501 in 2019-nCoV RBD provides
162	more support to hotspot-353 than Ser487, but less than Thr487. This analysis suggests
163	that 2019-nCoV recognizes human ACE2 less efficiently than human SARS-CoV (year
164	2002), but more efficiently than human SARS-CoV (year 2003). Hence, at least when
165	considering the ACE2-RBD interactions, 2019-nCoV has gained some capability to
166	transmit from human and human.
167	Third, residues 455, 486 and 494 are leucine, phenylalanine and serine in 2019-
168	nCoV RBD, respectively (corresponding to residues 442, 472 and 480 in SARS-CoV,
169	respectively) (Fig. 1B, 1C, 1D). Based on our previous structural analysis, these three
170	residues in SARS-CoV RBD play significant roles, albeit not as dramatic as residues 479
171	and 487, in ACE2 binding (24-26). More specifically, Tyr442 of human and civet SARS-
172	CoV RBDs provides unfavorable interactions with hotspot-31 on human ACE2 (this
173	residue has been mutated to Phe442 in the optimized RBD); Leu455 of 2019-nCoV RBD
174	provides favorable interactions with hotspot-31, hence enhancing viral binding to human
175	ACE2. Leu472 of human and civet SARS-CoV RBDs provides favorable support for
176	hotspot-31 on human ACE2 through hydrophobic interactions with ACE2 residue Met82
177	and several other hydrophobic residues (this residue has been mutated to Phe472 in the

 \sum

178	optimized RBD); Phe486 of 2019-nCoV RBD provides even more support for hotspot-
179	31, hence also enhancing viral binding to human ACE2. Asp480 of human and civet
180	SARS-CoV RBDs provides favorable support for hotspot-353 on human ACE2 through a
181	neighboring tyrosine (this residue remains as an aspartate in the optimized RBD); Ser494
182	in 2019-nCoV RBD still provides positive support for hotspot-353, but the support is not
183	as favorable as provided by Asp480. Overall, Leu455, Phe486 and Ser494 of 2019-nCoV
184	RBD support that 2019-nCoV recognizes human ACE2 and infects human cells.
185	Last, having analyzed the interactions between 2019-nCoV RBD and human
186	ACE2, how does 2019-nCoV RBD interact with putative ACE2 receptor orthologues
187	from other animal species? Compared to human ACE2, both hotspot-31 and hotspot-353
188	on civet ACE2 have changed significantly (Fig. 4A). Specifically, residue 31 of civet
189	ACE2 becomes a threonine, which can no longer form a salt bridge with Glu35; residue
190	38 of civet ACE2 becomes a glutamate, which forms a strong bifurcated salt bridge with
191	Lys353 and no longer needs strong support from neighboring residues. A previously
192	designed SARS-CoV RBD is optimal for binding to civet ACE2 (Fig. 1B, 4B) (26). In
193	this designed RBD, Tyr442 forms a hydrogen bond with Thr31 of civet ACE2, and
194	Arg479 forms a strong bifurcated salt bridge with Glu35 of civet ACE2. Moreover, in the
195	designed RBD, Pro472 avoids unfavorable interactions with Thr82 of civet ACE2, and
196	Gly480 does not provide unneeded support for hotspot-353. Furthermore, in the designed
197	RBD, Thr487 provides limited but helpful support for hotspot-353. Here we constructed a
198	structural model for the complex of 2019-nCoV RBD and civet ACE2 (Fig. 4C). Based
199	on this model, Phe486 of 2019-nCoV RBD forms moderately unfavorable interaction
200	with the polar side chain of Thr82 of civet ACE2, and Leu455 and Gln493 would lose

Σ

201	favorable interactions with civet ACE2 but they would be still compatible with civet
202	ACE2. Thus, 2019-nCoV likely still uses civet ACE2 as its receptor, although it appears
203	that 2019-nCoV RBD has not evolved adaptively for civet ACE2 binding. Moreover,
204	2019-nCoV likely does not use mouse or rat ACE2 as its receptor because mouse or rat
205	ACE2 contains a histidine at the 353 position, which does not fit into the virus/receptor
206	interact as well as a lysine does (Fig. 3A). 2019-nCoV RBD likely recognizes ACE2
207	from pigs, ferrets, cats, orangutans, monkeys and humans with similar efficiency, because
208	these ACE2 molecules are identical or similar in the critical virus-binding residues. The
209	situation involving bat ACE2 is complex because of the diversity of bat species (29).
210	Based on the sequence of ACE2 from Rhinolophus sinicus bats (which can be recognized
211	by bat SARS-CoV strain Rs3367), 2019-nCoV RBD likely also recognizes bat ACE2 as
212	its receptor. Overall, 2019-nCoV likely recognizes ACE2 orthologues from a diversity of
213	species, except for mouse and rat ACE2 (which should be poor receptors for 2019-
214	nCoV).
215	
216	Discussion

217 Atomic level resolution of complex virus-receptor interactions provides new 218 opportunities for predictive biology. In this instance, we used prior knowledge gleamed 219 from multiple SARS-CoV strains (isolated from different hosts in different years) and 220 ACE2 receptors (from different animal species) to model predictions for novel 2019-221 nCoV. Our structural analyses confidently predict that 2019-nCoV uses ACE2 as its host 222 receptor, consistent to two other new publications (30, 31). Compared to previously 223 isolated SARS-CoV strains, 2019-nCoV likely uses human ACE2 less efficiently than

Σ

 \sum

224

225	2003). Because ACE2-binding affinity has been shown to be one of the most important
226	determinants of SARS-CoV infectivity, 2019-nCoV has evolved the capability to infect
227	humans and some capability to transmit among humans. Alarmingly, our data predict that
228	a single N501T mutation (corresponding to the S487T mutation in SARS-CoV) may
229	significantly enhance the binding affinity between 2019-nCoV RBD and human ACE2.
230	Thus, 2019-nCoV evolution in patients should be closely monitored for the emergency of
231	novel mutations at the 501 position (to a lesser extent, also the 494 position).
232	What is the source of 2019-nCoV and did a key intermediate host play an
233	important role in the current 2019-nCoV outbreak? Similar to SARS-CoV, 2019-nCoV
234	most likely has originated from bats, given its close phylogenetic relationship with other
235	β -genus lineage b bat SARS-CoV (Fig. 2). Moreover, 2019-nCoV likely recognizes
236	ACE2 from a diversity of animal species, including palm civets, as its receptor. In the
237	case of SARS-CoV, some of its critical RBM residues were adapted to human ACE2,
238	while some others were adapted to civet ACE2 (26); this type of partial viral adaptations
239	to two host species promoted virus replication and cross-species transmission between
240	the two host species. In the case of 2019-nCoV, however, there is no strong evidence for
241	adaptive mutations in its critical RBM residues that specifically promote viral binding to
242	civet ACE2. Hence, either palm civets were not intermediate hosts for 2019-nCoV, or
243	they passed 2019-nCoV to humans quickly before 2019-nCoV had any chance to adapt to
244	civet ACE2. Like SARS-CoV, 2019-nCoV will likely replicate inefficiently in mice and
245	rats, ruling them out as intermediate hosts for 2019-nCoV. Moreover, we predict that
246	either 2019-nCoV or laboratory mice and rats would need to be genetically engineered

human SARS-CoV (year 2002), but more efficiently than human SARS-CoV (year

247	before a robust mouse or rat model for 2019-nCoV would become available. Pigs, ferrets,
248	cats and non-human primates contain largely favorable 2019-nCoV-contacting residues
249	in their ACE2, and hence may serve as animal models or intermediate hosts for 2019-
250	nCoV. It is worth noting that SARS-CoV was isolated in wild palm civets near Wuhan in
251	2005 (9), and its RBD had already been well adapted to civet ACE2 (except for residue
252	487). Thus, bats and other wild animals in and near Wuhan should be screened for both
253	SARS-CoV and 2019-nCoV.
254	These above analyses are based on the modeling of 2019-nCoV RBD/ACE2
255	interactions, heavily grounded in a series of atomic level structures of SARS-CoV
256	isolated from different hosts in different years (18, 24-26). There are certainly other
257	factors that affect the infectivity and pathogenesis of 2019-nCoV and will need to be
258	investigated. Nevertheless, our decade-long structural studies on SARS-CoV have firmly
259	shown that receptor recognition by SARS-CoV is one of the most important determinants
260	of its cross-species transmission and human-to-human transmission, a conclusion that has
261	been confirmed by different lines of research (13, 14). One of the long-term goals of our
262	previous structural studies on SARS-CoV was to build an atomic-level iterative
263	framework of virus-receptor interactions that facilitate epidemic surveillance, predict
264	species-specific receptor usage, and identify potential animal hosts and likely animal
265	models of human diseases. This study provides a robust test of this reiterative framework,
266	providing the basic, translational and public health research communities with predictive
267	insights that may help study and battle this novel 2019-nCoV.
268	

269 Materials and Methods

271	models (32). Software PyMol was used for preparing structural figures (33).
272	
273	Phylogenetic analysis. Consensus radial phylograms were generated in Geneious Prime

Structural analysis. Software Coot was used for introducing mutations to structural

(v.2020.0.3), with the Jukes-Cantor genetic distance model, the Neighbor-Joining build
method, and no outgroup, with 100 bootstrap replicates. Phylograms were rendered for

- 276 publication in Adobe Illustrator CC 2020.
- 277

270

- 278 *Sequence alignment.* Protein sequence alignments were done using Clustal Omega (34).
- 279
- 280
- 281

M

282 Acknowledgements

283	This work was supported by NIH grants R01AI089728 and R01AI110700 (to F.L.
284	and R.S.B.). We would like to thank Shanghai Public Health Clinical Center and School
285	of Public Health, Central Hospital of Wuhan, Huazhong University of Science and
286	Technology, Wuhan Center for Disease Control and Prevention, National Institute for
287	Communicable Disease Control and Prevention, Chinese Center for Disease Control, and
288	University of Sydney Australia for releasing the sequence of 2019-nCoV genome.
289	

290

Journal of Virology

291 References

292 293 1. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, 294 Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJY. 2003. A major 295 outbreak of severe acute respiratory syndrome in Hong Kong. New England 296 Journal of Medicine 348:1986-1994. 297 Yu ITS, Li YG, Wong TW, Tam W, Chan AT, Lee JHW, Leung DYC, Ho T. 2. 298 2004. Evidence of airborne transmission of the severe acute respiratory syndrome 299 virus. New England Journal of Medicine 350:1731-1739. 300 3. Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield 301 YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, 302 Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, 303 Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, 304 Siddiqui A, Smailus DE, Stott JE, Yang GS, Plummer F, Andonov A, Artsob 305 H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, 306 Fernando L, Flick R, Garbutt M, Grav M, Grolla A, Jones S, Feldmann H, 307 Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, et al. 308 2003. The genome sequence of the SARS-associated coronavirus. Science 309 300:1399-1404. 310 4. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee 311 WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung 312 **RWH, Ng TK, Yuen KY.** 2003. Coronavirus as a possible cause of severe acute 313 respiratory syndrome. Lancet 361:1319-1325. 314 5. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li 315 PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, 316 Shortridge KF, Yuen KY, Peiris JSM, Poon LLM. 2003. Isolation and 317 characterization of viruses related to the SARS coronavirus from animals in 318 Southern China. Science 302:276-278. 319 6. Liang GD, Chen QX, Xu JG, Liu YF, Lim W, Peiris JSM, Anderson LJ, 320 Ruan L, Li H, Kan B, Di B, Cheng P, Chan KH, Erdman DD, Gu SY, Yan 321 XG, Liang WL, Zhou DH, Haynes L, Duan SM, Zhang X, Zheng H, Gao Y, 322 Tong SX, Li DX, Fang L, Qin PZ, Xu WB. 2004. Laboratory diagnosis of four 323 recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerging Infectious Diseases 10:1774-1781. 324 325 7. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao 326 YW, Zhou HQ, Xiang H, Zheng HJ, Chern SWW, Cheng F, Pan CM, Xuan 327 H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, 328 Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen

329 330 331 332 333		JD, Liang GD, Gao Y, Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong SX, Kong XG, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, et al. 2005. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy of Sciences of the United States of America 102:2430-2435.
334 335 336 337	8.	Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, Baric R. 2008. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. Journal of Virology 82: 2274- 2285.
338 339 340 341 342	9.	Liu L, Fang Q, Deng F, Wang HZ, Yi CE, Ba L, Yu WJ, Lin RD, Li TS, Hu ZH, Ho DD, Zhang LQ, Chen ZW. 2007. Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. Journal of Virology 81: 4694-4700.
343 344 345 346 347	10.	Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698.
348 349 350 351	11.	Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503 :535-538.
352 353	12.	Cui J, Li F, Shi ZL. 2019. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181-192.
354 355	13.	Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 100:246-254.
356 357 358	14.	Li WH, Wong SK, Li F, Kuhn JH, Huang IC, Choe H, Farzan M. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions. Journal of Virology 80: 4211-4219.
359 360	15.	Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology 7: 439-450.
361 362	16.	Li F. 2016. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 3: 237-261.
363 364 365 366	17.	Li WH, Moore MJ, Vasilieva N, Sui JH, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 :450-454.

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

367

368

18.

369 19. Li WH, Greenough TC, Moore MJ, Vasilieva N, Somasundaran M, Sullivan 370 JL, Farzan M, Choe H. 2004. Efficient replication of severe acute respiratory 371 syndrome coronavirus in mouse cells is limited by murine angiotensin-converting 372 enzyme 2. Journal of Virology 78:11429-11433. 373 20. Li WH, Zhang CS, Sui JH, Kuhn JH, Moore MJ, Luo SW, Wong SK, Huang 374 IC, Xu KM, Vasilieva N, Murakami A, He YQ, Marasco WA, Guan Y, Choe 375 HY, Farzan M. 2005. Receptor and viral determinants of SARS-coronavirus 376 adaptation to human ACE2. Embo Journal 24:1634-1643. 377 21. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, 378 Netland J, Jia HP, Halabi C, Sigmund CD, Meverholz DK, Kirby P, Look 379 DC, Perlman S. 2007. Lethal infection of K18-hACE2 mice infected with severe 380 acute respiratory syndrome coronavirus. Journal of Virology **81:**813-821. 381 22. Moore MJ, Dorfman T, Li WH, Wong SK, Li YH, Kuhn JH, Coderre J, 382 Vasilieva N, Han ZC, Greenough TC, Farzan M, Choe H. 2004. Retroviruses 383 pseudotyped with the severe acute respiratory syndrome coronavirus spike protein 384 efficiently infect cells expressing angiotensin-converting enzyme 2. Journal of 385 Virology 78:10628-10635. 386 23. Qu XX, Hao P, Song XJ, Jiang SM, Liu YX, Wang PG, Rao X, Song HD, 387 Wang SY, Zuo Y, Zheng AH, Luo M, Wang HL, Deng F, Wang HZ, Hu ZH, 388 Ding MX, Zhao GP, Deng HK. 2005. Identification of two critical amino acid 389 residues of the severe acute respiratory syndrome coronavirus spike protein for its 390 variation in zoonotic tropism transition via a double substitution strategy. Journal 391 of Biological Chemistry 280:29588-29595. 392 24. Li F. 2008. Structural analysis of major species barriers between humans and 393 palm civets for severe acute respiratory syndrome coronavirus infections. Journal 394 of Virology 82:6984-6991. 395 25. Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus 396 spike receptor-binding domain complexed with receptor. Science **309**:1864-1868. 397 Wu KL, Peng GQ, Wilken M, Geraghty RJ, Li F. 2012. Mechanisms of Host 26. 398 Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus. 399 Journal of Biological Chemistry 287:8904-8911.

Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of

structural studies. J Virol 89:1954-1964.

- Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014.
 Receptor usage and cell entry of bat coronavirus HKU4 provide insight into batto-human transmission of MERS coronavirus. Proc Natl Acad Sci U S A
 111:12516-12521.
 - 17

404 405 406 407 408	28.	Raj VS, Mou HH, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus A, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251- 254.
409 410 411	29.	Hou YX, Peng C, Yu M, Li Y, Han ZG, Li F, Wang LF, Shi ZL. 2010. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Archives of Virology 155:1563-1569.
412 413	30.	Michael C Letko VM. 2020. Functional assessment of cell entry and receptor usage for lineage B β -coronaviruses, including 2019-nCoV. wwwbiorxivorg.
414 415 416 417 418 419 420	31.	Zheng-Li Shi PZ, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu- Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Gengfu Xiao. 2020. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. wwwbiorxivorg.
421 422	32.	Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallographica Section D-Biological Crystallography 60: 2126-2132.
423 424	33.	Anonymous. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.
425 426 427 428 429	34.	Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.

430

Z

431 Figure legends:

432	Figure 1: Structural analysis of human ACE2 recognition by 2019-nCoV and SARS-
433	CoV. (A) Overall structure of human SARS-CoV RBD (year 2002) complexed with
434	human ACE2. PDB ID is 2AJF. ACE2 is in green, the core of RBD (receptor-binding
435	domain) is in cyan, and RBM (receptor-binding motif) is in magenta. (B) Critical residue
436	changes in the RBMs of SARS-CoV and 2019-nCoV. All these five residues in SARS-
437	CoV underwent natural selections and were shown to be critical for ACE2 recognition,
438	cell entry, and host range of SARS-CoV. The residue numbers are shown as in SARS-
439	CoV RBD, with the corresponding residue numbers in 2019-nCoV shown in parentheses.
440	For viral adaption to ACE2, > means "is more adapted" and = means "is similarly
441	adapted". (C) Experimentally determined structure of the interface between a designed
442	SARS-CoV RBD (optimized for human ACE2 recognition) and human ACE2. PDB ID is
443	3SCI. (D) Modeled structure of the interface between 2019-nCoV RBD and human
444	ACE2. Here mutations were introduced to the RBD region in panel (C) based on
445	sequence differences between SARS-CoV and 2019-nCoV. GenBank accession numbers
446	are: MN908947.1 for 2019-nCoV Spike; NC_004718.3 for human SARS -CoV Spike
447	(year 2002; strain Tor2); AGZ48818.1 for bat SARS-CoV Spike (year 2013; strain
448	Rs3367); AY304486.1 for civet SARS-CoV spike (year 2002; SZ3); AY525636 for
449	human/civet SARS-CoV spike (year 2003; strain GD03). References for the other
450	sequences are: civet SARS-CoV spike (year 2005) (9); human SARS-CoV spike (year
451	2008) (8).

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

452

 \sum

453	Figure 2. Spike phylogeny of representative β -genus lineage b coronaviruses. The
454	Spike protein sequences of selected β -genus lineage b coronaviruses were aligned and
455	phylogenetically compared. Sequences were aligned using free end gaps with the
456	Blosum62 cost matrix in Geneious Prime. The tree was constructed using the neighbor-
457	joining method based on the multiple sequence alignment, also in Geneious Prime.
458	Numbers following the underscores in each sequence correspond to the GenBank
459	accession number. The radial phylogram was exported from Geneious and then rendered
460	for publication using EvolView (evolgenius.info) and Adobe Illustrator CC 2020.
461	
462	Figure 3: Sequence comparison of 2019-nCoV and SARS-CoV. (A) Sequence
463	alignment of SARS-CoV and 2019-nCoV RBDs. RBM residues are in magenta. The five
464	critical residues in Fig. 1B are in blue. ACE2-contacting residues are shaded. Asterisks
465	indicate positions that have a single, fully conserved residue. Colons indicate positions
466	that have strongly conserved residues. Periods indicate positions that have weakly
467	conserved residues. (B) Sequence similarities of SARS-CoV and 2019-nCoV in the spike
468	protein, RBD and RBM, respectively. (C) Sequence similarities of MERS-CoV and
469	HKU4 virus in the spike protein, RBD and RBM, respectively. GenBank accession
470	numbers are: JX869059.2 for human MERS-CoV Spike; NC_009019.1 for bat HKU4-
471	CoV Spike.
472	
473	Figure 4: Structural analysis of animal ACE2 recognition by 2019-nCoV and SARS-
474	CoV. (A) Critical changes in virus-contacting residues of ACE2 from different host

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

475 species. GenBank accession numbers for ACE2 are as follows: NM_001371415.1

- 476 (human), AAX63775.1 (civet), KC881004.1 (bat), NP_001123985.1 (mouse), AY881244
- 477 (rat), NP_001116542.1 (pig), AB208708 (ferret), NM_001039456 (cat), Q5RFN1
- 478 (orangutan), and AY996037 (monkey). (B) Experimentally determined structure of the
- 479 interface between a designed SARS-CoV RBD (optimized for civet ACE2 recognition)
- 480 and civet ACE2. PDB ID is 3SCK. (C) Modeled structure of the interface between 2019-
- 481 nCoV RBD and civet ACE2. Here mutations were introduced to the RBD region in panel

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

(B) based on sequence differences between SARS-CoV and 2019-nCoV.

Α

	B _{Virus}	Year	442	472	479	480	487
Human ACE2	SARS - human	2002	Y	L	N	D	т
	SARS - civet	2002	Y	L	ĸ	D	S
	SARS - human/civet	2003	Y	Р	N	G	S
	SARS - civet	2005	Y	Р	R	G	S
00000	SARS - human	2008	F	F	N	D	S
	Viral adaption to human ACE2		F > Y	F > L > P	N = R >>> K	D > G	T >>> S
	Optimized - human	In vitro design	F	F	N	D	т
RBM	Viral adaptation to civet ACE2		Y > F	P = L > F	R > K = N	G > D	T > S
Human	Optimized - civet	In vitro design	Y	Р	R	G	т
SARS-CoV	SARS - bat	2013	S	F	N	D	Ν
	2019-nCoV – human	2019	L (455)	F (486)	Q (493)	S (494)	N (501)

С

Journal of Virology

Human ACE2

Downloaded from http://jvi.asm.org/ on February 2, 2020 at SCD UNIVERSITE PARIS V

Online	
Posted	
Manuscript	
Accepted /	

Α						
Human-SARS-2002	306 RVVPS GDVVRFP	NIT NLCPFGEVFN	ATKFPSVYAW	ERKKISNCVA	DYSVLYNSTF	360
Civet-SARS-2002	319 RVVPS GDVVRFP	NIT NLCPFGEVFN	ATKFPSVYAW	ERKRISNCVA	DYSVLYNSTS	373
Bat-SARS-2013	319 RVAPS KEVVRFP	NIT NLCPFGEVFN	ATTFPSVYAW	ERKRISNCVA	DYSVLYNSTS	373
2019-nCoV	319 RVQPT ESIVRFP	NIT NLCPFGEVFN	ATRFASVYAW	NRKRISNCVA	DYSVLYNSAS	373
	** *: .:****	*** ********	** * *****	:**:*****	*******	
Human-SARS-2002	FSTFKCYGVS ATKLNDL	CFS NVYADSFVVK	GDDVRQIAPG	QTGVIADYNY	KLPDDFMGCV	420
Civet-SARS-2002	FSTFKCYGVS ATKLNDL	CFS NVYADSFVVK	GDDVRQIAPG	QTGVIADYNY	KLPDDFMGCV	433
Bat-SARS-2013	FSTFKCYGVS ATKLNDL	CFS NVYADSFVVK	GDDVRQIAPG	QTGVIADYNY	KLPDDFTGCV	433
2019-nCoV	FSTFKCYGVS PTKLNDL	CFT NVYADSFVIR	GDEVRQIAPG	QTGKIADYNY	KLPDDFTGCV	433
	*****	**: *******::	**:******	*** *****	***** ***	
	_					
Human-SARS-2002	LAWNTRNIDA TSTGNYN	YKY RYLRHGKLRP	FERDISNVPF	SPDGKPCTP-P	ALNCYWPLND	480
Civet-SARS-2002	LAWNTRNIDA TSTGNYN	YKY RYLRHGKLRP	FERDISNVPF	SPDGKPCTP-P	ALNCYWPLKD	493
Bat-SARS-2013	LAWNTRNIDA TQTGNYN	YKY R <mark>S</mark> LRHGKLRP	FERDISNVPF	SPDGKPCTP-P	AFNCYWPLND	493
2019-nCoV	IAWNSNNLDS KVGGNYN	YLY R <mark>L</mark> FRKSNLKP	FERDISTEIY	QAGSTPCNGVE	GFNCYFPLQS	494
	:***:.*:*: . ****	* * * :*:.:*:*	*****•	• •••*•	.:***:**:.	
Human-SARS-2002	YGFYTTTGIG YQPYRVV	VLS FELLNAPATV	CGPKL 515			
Civet-SARS-2002	YGFYTTSGIG YQPYRVV	VLS FELLNAPATV	CGPKL 528			
Bat-SARS-2013	YGFYITNGIG YQPYRVV	VLS FELLNAPATV	CGPKL 528			
2019-nCoV	YGFOPTNGVG YOPYRVV	VLS FELLHAPATV	CGPKK 529			
	*** * * * ******	*** *********	* * * *			

B	Spike / RBD / RBM	SARS-human	SARS-civet	SARS-bat	2019-nCoV
	SARS-human	100% / 100% / 100%			
	SARS-civet	98.12% / 98.10% / 97.18%	100% / 100% / 100%		
	SARS-bat	92.33% / 94.29% / 92.96%	92.75% / 94.76% / 91.55%	100% / 100% / 100%	
	2019-nCoV	76.04% / 73.33% / 50.00%	76.78% / 74.29% / 50.00%	77.50% / 75.71% / 52.78%	100% / 100% / 100%

С	Spike /RBD /RBM	MERS-human
	HKU4-bat	67.04% /57.69% /40.79%

Σ

Journal of Virology

A	
	AC
	Hur
	Civ
	Bat
	Мо
	Rat
	Pig
	Fer
	A

ACE2	31	35	38	82	353
Human	K	Е	D	М	К
Civet	Т	Е	Е	Т	К
Bat	κ	Κ	D	Ν	K
Mouse	Ν	Е	D	S	Н
Rat	Κ	Е	D	Ν	Н
Pig	Κ	Е	D	Т	К
Ferret	κ	Е	Е	Т	K
Cat	Κ	Е	Е	Т	К
Orangutan	Κ	Е	D	М	K
Monkey	Κ	Е	D	Μ	κ

Civet SARS-CoV-optimized RBD

С

Civet ACE2 T82 F486 N501 T31 K353 E38 E35 Q493 **L**455

Human 2019-nCoV RBD (model)